Analysis of Temperature Change in Gwangyang Bay Area using Landsat Imagery Chonnam Nat'l. Univ. Vol. 8. pp.83-98. 2008

Landsat 위성영상을 이용한 광양만권 온도변화

한동엽 · 이효성*

전남대학교 건설·환경공학부 *순천대학교 토목공학과

Analysis of Temperature Change in Gwangyang Bay Area using Landsat Imagery

Dong-Yeob Han · Hyo-Seong Lee*

Department of Civil & Environmental Engineering, Chonnam National University *Division of Civil, Architectural and Environmental Engineering, Sunchon National University

ABSTRACT

This research analyses the temperature change in Gwangyang Bay area using time series imagery of Landsat. From 2000 to 2003, we estimate the temperature by a NASA empirical formula from 9 Landsat-7 thermal imagery and analyse it related to urban growth.

Key words : Gwangyang Bay, Landsat, Temperature Chnage, Land Use

84 한동엽·이효성

1.서론

2012년 여수 세계박람회, 광양의 경제자유구 역, 순천 생태도시 등으로 향후 광양만권은 함께 성장할 것으로 여겨진다. 한편 광양 국제물류단 지의 급속한 발전 및 전지구적 온난화에 따라 지 역적 환경변화도 우려되고 있다. 온도 상승효과 로 인한 피해의 한 예로 1990년대 이후 지속적 으로 발생하고 있는 적조를 들 수 있다.

위성영상을 이용하여 온도를 추출하는 연구는 도시 열섬효과 분석, 해수 온도 추정, 적조 탐지 등에서 다양하게 진행되고 있다. 위성 센서에 감 지되는 전자기파에는 태양복사 에너지와 지구복 사 에너지가 모두 존재하며, 육지의 경우 지구복 사 에너지와 태양복사 에너지를 동시에 방사하 기 때문에 온도을 정확하게 추정하기 어렵다. 반 면에 강, 호수, 바다 등의 물은 열적외 파장에서 혹체에 가까운 성질을 지니고 태양복사 에너지 를 모두 흡수하므로 열적외 밴드로부터 수온을 비교적 정확하게 추정할 수 있다.

Landsat을 이용하여 온도를 추정하는 경우, Landsat 영상에 포함된 대기 영향을 보정할 수 있는 자료를 제공하지 않고 있기 때문에, 모델식 을 세워 적용하게 된다. 본 연구에서는 Landsat 열적외 밴드로부터 광양만권 온도를 추정하여 변화 상태를 파악하고자 한다.

2. 연구방법

2.1 연구대상지역 및 사용 데이터

Fig. 1. Location of the study area.

Table 1은 사용된 Landsat 영상의 제원이다.

Table 1. Specification of data

sensor	shooting time	sun ah gle		
ETM+	2000/10/15	EL42.79 A152.35		
ETM+	2001/02/20	EL37.69 A145.56		
ETM+	2001/09/16	EL51.59 A141.22		
ETM+	2002/01/06	EL27.94 A153.26		
ETM+	2002/03/27	EL50.08 A137.99		
ETM+	2002/07/17	EL63.73 A113.79		
ETM+	2002/11/06	EL35.97 A155.76		
ETM+	2003/04/15	EL56.61 A132.79		
ETM+	2003/05/17	EL64.31 A120.79		

2.2 TM 열적외 밴드의 온도변환

열적외 밴드로부터 분광방사휘도를 계산하는 식은 다음과 같다. L+(L _{max} - L _{min})Q_{cal}/255=L_{min} .여기서,L:분광방사휘도 L_{max},L_{min}:검출기의 최대, 최소 방사 휘도 Q_{cal}:열적외 밴드 화소값

NASA와 USGS (United States Geological Survey)에서 제시된 자료에 의하면 TM 열적외 밴드를 적용할 경우, *L*_{min} = 0.12378, *L*_{max} = 1.5303이다. 분광방사휘도로부터 토지피복온도 값으로 변환하는 방법으로 NASA의 Markham 등 과 USGS의 Chander (2003)¹¹⁾에 의해 제시 된 모델식을 이용하였다.

Table 1. Specification of data

satellite	constant 1 K ₁ (K)	constant 2 K ₂
Landsat-4	671.62	1284.30
Landsat-5	607.76	1260.56
Landsat-7	666.09	1282.71

각 물체는 고유의 방사율을 가지며, 표면상태, 파장에 따라 달라지며 정확히 구하기 어렵다. 본 논문에서는 열적외 데이터로부터 변환되는 에 물체의 방사율을 적용하여 물체의 표면온도 로 변환하기 위해 다음 식을 이용하였다. 흑체의 경 우 방사율은 1이며, 물체를 구분하기 위해 토지 피복도를 구한다. NDVI(Normalized Difference Vegetation Index)도 방사율 값으로 사용될 수 있다.

Sobrino,et al (2004)²⁾에 의하면 표면온도를 NDVI와 방사율을 사용하여 유도될 수 있다.

$$T_{\rm s} = \frac{T_{\rm a}}{1(\lambda \times T_{\rm a}/\rho)\ln\varepsilon}$$

여기서,

Ts:표면온도

- λ : wavelength of emitted radiance (11.5µm)
- ρ : hc/K (1.438×10⁻² mK)
- σ : Boltzman constant (1.38×10⁻²³ J/K)
- h : Planck 's constant $(6.26 \times 10^{-34} \text{ J} \cdot \text{s})$
- c : velocity of light (2.998×10^8 m/s)

방사율 다음 식으로 추정될 수 있다.
$$s = f_{e_{1}} + (1 - f_{e_{1}}) s_{e_{2}}$$

여기서,

- ε_v : emissivity of vegetation
- ε_s : emissivity of soil

f_v는 다음과 같다.

$$f_{\rm v} = 1 - \left(\frac{NDVI_{\rm max} - NDVI}{NDVI_{\rm max} - NDVI_{\rm min}}\right)^{\alpha}$$

여기서,

- *NDVI*_{max} : NDVI for complete vegetation cover *NDVI*_{min} : NDVI for bare soil.
- a: function of leaf orientation distribution with the canopy

연구 결과의 검증을 위해 기상청, 국립해양조 사원 등에서 제공하는 조위관측소 수온 자료를 사용할 수 있다.

86 한동엽·이효성

case1		case2	
case	emissivity	case	emissivity
city	0.95	vegetation	0.95
farmland	0.98	non vegetation	0.92
rorest	0.98		
waters	0.98		
bare ground	0.92		

Table 2. Example of land cover emissivity

광영역과 근적외 영역에서는 이 지역이 다르게 나타나지 않는다. 2002년 7월 17일 영상에는 구 름이 3군데 포함되어 있으며, 이 지역은 온도가 낮게 나타났다. 특이한 점은 구름이 존재하는 지 역은 낮은 온도를 나타내지만, 구름으로 인한 그 림자 지역은 구름이 없는 주변지역과 온도차가 크지 않다는 점이다.

2.3 기하보정(co-registration)

Landsat 영상은 WGS84 타원체, UTM 좌표계 로 기하보정되었다. 대상영역의 좌상단 좌표는 (357,000, 3,873,000), 우 하 단 좌표는 (397,000, 3,840,000)이고, 길이는 40 km × 33 km 이다.

3. 결과 및 고찰

Fig. 2는 생성된 온도 영상이다. Landsat 7 ETM+ 센서의 SLC-Off로 인해 완전한 영상을 취득하지 못하지만 연구 대상지역의 경우 비교 적 많은 정보를 담고 있기 때문에, 2008년 3월 영상을 참고 영상으로 Fig. 2에 추가하였다. 그림 의 음영정도는 동일값을 나타내는 것이 아니고 영상강조된 것으로 각 영상내의 상대적 온도 차 이를 구분하는 것으로 이용할 수 있다.

대상지역내 온도가 높게 유지되는 곳은 광양 지역의 광양제철이다. 동절기에는 바다의 온도 가 상대적으로 높고, 하절기에는 도심의 온도가 높게 나타났다. 지형 굴곡으로 인한 그림자 효과 가 산악지역에서 크게 나타나고 있으며, 이러한 효과를 제거하기 위해 수치표고모델(Digital Elevation Model)을 활용하는 것이 필요하다. 한 편 광양만과 순천만의 표충수온차가 구분되는 것도 주목할 만하다.

2003년 5월 17일 영상에서 특이한 점이 발견 되었다. 순천만 중심부근과 초남대교 아래쪽에 선형 형태의 낮은 수온이 나타나고 있는데, 가시

Fig. 2. Temperature Images.

Landsat 위성영상을 이용한 광양만권 온도변화 87

(a) (B,G,R) = (20010916, 20001015, 20021106)

(b) (B,G,R) = (20010220, 20020327, 20030415)

Fig. 3. Temperature Composite.

Fig. 4. Unsupervised Classification: 20 class.

Fig. 3은 세 개 시기 온도영상을 조합하여 컬러 영상으로 나타낸 것으로 (a)는 하반기, (b)는 상 반기 영상으로 각 영상은 약 1년간 차이가 있다. 단색으로 일정부분을 차지하고 있는 부분은 변 화가 큰 지역이고, 채도가 낮은 곳은 변화가 심하 지 않은 곳이다. 특히 흰색에 가까운 곳은 온도 변화가 상대적으로 적은 곳이다. 해수의 경우 광 양제철 주변은 공간적으로 온도 변화가 크지 않 지만 순천만은 크게 나타난다.

대상지역의 좌상단에는 순천 도심이 있고, 도 심 아래 쪽은 농경지다. Fig. 3의 두 영상을 살펴 보면 순천의 도심과 농경지가 잘 구분되는 것을 알 수 있다. 같은 도심에서도 순천, 여수, 광양은 다른 특성을 나타낸다. 광양은 대체로 온도가 높 고, 순천과 여수는 상대적으로 낮게 나타났다. 반 면에, 상반기는 여수도심과 순천 도심이 비슷한 온도 특성을 보이지만, 하반기에는 여수가 조금 더 낮게 나타난다.

Fig. 4는 9개의 온도 영상을 모두 이용하여 처 리한 20개 클래스 무감독 분류 결과이다. 도심지 역, 경작지, 갯벌, 바다 등은 비교적 구분이 명확 하지만, 그림자로 인해 산림 지역의 구분이 떨어 진다. 이를 통하여 다시기 열적외 영상이 토지이 용 분류에 활용될 수 있을 것으로 여겨진다.

4. 결 론

 지표 특성에 따라 온도가 다르게 나타났다.
 연구 결과 Landsat 열적외 영상은 열 관측 및 모니터링, 환경 모니터링, 나아가 지역적 이상 기온 모니터링 등에 활용될 수 있을 것이다.
 온도 경년변화에 대한 좀 더 의미있는 분석을 위해 대기 및 지형 보정의 개선이 필요하다.

88 한동엽·이효성

사사

본 논문은 한국항공우주연구원의 다목적실용 위성 3호 개발사업의 연구비 지원에 의해 수행 되었습니다.

참고문헌

- Chander, G. and B. Markham, "Revised Landsat 5 TM Radiometric Calibration Procedures and Post-Calibration Dynamic Ranges", USGS and NASA, 4 (2003).
- 2. Sobrino, J.A., J.C. Jimenez-Munoz, and L.

Paolini, "Land surface temperature retrieval from LANDSAT TM 5", Remote Sensing of Environment, 90, pp. 434~440(2004).

- 김기홍, 홍성창, 윤준희, "대기보정된 Landsat 위성영상을 이용한 해수온도 분석," 한국측량 학회지, 26(3), pp. 219~225(2008).
- 4. 김용민, 변영기, 허용, 유기윤, "MODIS Level 2 Data를 이용한 Cochlodinium Polykrikoides 적조 탐지", 대한토목학회논문집, 27(4D), pp. 535~540(2007).
- 5. 박민호, "원격탐사 데이터를 이용한 도시 열환
 경의 경년변화에 관한 연구," 대한토목학회논
 문집, 24(3D), pp. 487~496(2004).